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A B S T R A C T

Functional neuroimaging has fundamentally changed our understanding of disorders of consciousness (DoC). 
While many DoC patients exhibit minimal to no behavioural responsiveness, a significant minority show neural 
evidence of awareness and preserved cognitive functioning. Although several cognitive functions have been 
explored in DoC patients, autobiographical memory – the ability to form and retrieve personal memories – has 
yet to be investigated. To address this gap, we used functional magnetic resonance imaging (fMRI) to investigate 
autobiographical memory in one DoC patient. The patient viewed video clips across three conditions: (1) Own - 
clips recorded from their perspective during a recent mall visit; (2) Other - clips from a healthy control’s visit to 
the same mall; and (3) Bookstore - novel clips from an entirely different store that had not been visited. We 
trained a linear support vector classifier to associate fMRI activity in canonical autobiographical memory regions 
with each condition using data from twelve healthy participants. We then applied the trained model to the 
patient’s data to ’decode’ which condition their fMRI activity predicted. The model accurately distinguished 
between Own, Other, and Bookstore conditions in the patient (Balanced Accuracy = 0.448, p = .032), with per-
formance within the control group range (p = .068). Similarly, the model distinguished between the Own and 
Other conditions above chance (Balanced Accuracy = 0.609, p = .032) and within the control group’s distribution 
(p = .620), suggesting that the patient was still able to differentiate personal experiences from visually similar 
scenes, despite being behaviourally unable to report that this was the case. These findings provide preliminary 
evidence that autobiographical memory processes, critical to conscious awareness and identity, remain intact in 
some DoC patients, shedding further light on their covert capabilities and inner experiences.

1. Introduction

Disorders of consciousness (DoC) refer to a spectrum of neurological 
impairments that result from severe brain injury. Patients with DoC, like 
the minimally conscious state or Unresponsive Wakefulness Syndrome 
(otherwise known as the vegetative state), show clear signs of physio-
logical arousal (‘wakefulness’) but often exhibit minimal or inconsistent 
evidence of awareness. Critically, DoC diagnoses rely entirely on 

observable behaviour. Patients showing limited but reproducible signs 
of awareness are typically diagnosed as minimally conscious, while 
those who remain unresponsive during behavioural assessment are 
diagnosed with Unresponsive Wakefulness Syndrome – a state of 
wakefulness without awareness (Georgiopoulos et al., 2010; Giacino 
et al., 2002, 2009; Jennett and Plum, 1972). However, accurately 
diagnosing DoC on the basis of behaviour alone is immensely difficult. 
Sensory or motor impairments can make patients appear to be 
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behaviourally unresponsive even when awareness is partially or entirely 
preserved (Kondziella et al., 2016; Monti et al., 2010; Owen et al., 
2006). In fact, previous research has shown that profound motor 
dysfunction can present like Unresponsive Wakefulness Syndrome while 
sparing awareness altogether – a phenomenon termed Cognitive Motor 
Dissociation or covert awareness (Fernández-Espejo et al., 2015; Pin-
cherle et al., 2021).

Functional neuroimaging has emerged as a powerful tool for 
detecting covert awareness in behaviourally non-responsive DoC pa-
tients (Berlingeri et al., 2019; Owen, 2013). Neuroimaging-based as-
sessments that use functional magnetic resonance imaging (fMRI; Owen 
et al., 2006), electroencephalography (EEG; Cruse et al., 2011), and, 
most recently, functional near-infrared spectroscopy (fNIRS; Kazazian 
et al., 2024) have uncovered sensory and cognitive capabilities that 
were otherwise inaccessible using conventional clinical tools. For 
example, while standardized diagnostic assessments can only infer pre-
served higher-level cognitive processes from behavioural responses, 
neuroimaging-based assessments can identify a rich set of cognitive 
processes such as bottom-up and top-down attention, language 
comprehension, plot-following, and command following (Chatelle et al., 
2020; Gibson et al., 2016; Laforge et al., 2020; Monti and Owen, 2010; 
Naci et al., 2014; Owen et al., 2006). Nevertheless, one critical domain 
that has not been explored in such patients is autobiographical memory.

Autobiographical memory, the ability to form and recall episodic 
memories, is a central pillar of everyday waking consciousness 
(Behrendt, 2013; Prebble et al., 2013). It plays a crucial role in shaping 
our sense of identity both in the present and over time (Prebble et al., 
2013; Tulving, 1985, 2002) and serves as a primary mechanism through 
which disparate sensory and cognitive processes connect to the self. 
Several key brain regions are involved in supporting these complex 
functions, including the prefrontal cortex, the hippocampus and sur-
rounding cortices, the posterior cingulate, retrosplenial cortex, and the 
angular gyrus (Shepardson et al., 2023). Additional regions, such as the 
medial and lateral temporal cortices, temporal-parietal junction, and 
cerebellum, also contribute to autobiographical memory retrieval 
(Svoboda et al., 2006). Many of these areas overlap with the so-called 
‘default mode network’, which facilitates self-referential processing 
and integrates contextual details – such as emotional valence and social 
content – into memory (Fuentes-Claramonte et al., 2019; Katsumi et al., 
2024; Raichle, 2015).

Some patients who have recovered from a DoC have retrospectively 
reported having autobiographical memories of their experiences 
(Fernández-Espejo and Owen, 2013; Owen, 2017; Taylor et al., 2020) 
and in other studies of such patients, intact autobiographical memory 
can be strongly inferred (Monti and Owen, 2010; Naci and Owen, 2013; 
Owen et al., 2006). Yet, whether a patient is actually able to lay down 
and retrieve autobiographical memories while in a behaviourally 
non-responsive state is difficult to determine because it is an inherently 
subjective phenomenon that is largely dependent on self-report 
(Rabinowitz and Levin, 2014). Additionally, even mild traumatic 
brain injuries can cause detectable impairments in memory performance 
(Dikmen et al., 1987; Hart and Sander, 2017) while moderate to severe 
brain injury significantly increases the risk of protracted cognitive and 
affective deficits, particularly related to memory (Shuanglong et al., 
2024). However, the fact that substantial overlap exists between the 
brain regions associated with autobiographical memory and those sup-
porting awareness, particularly the default mode network (e.g., Threl-
keld et al., 2018; Bodien et al., 2019), it seems likely that some covertly 
aware behaviourally non-responsive DoC patients also retain the neural 
capacity to support autobiographical memory.

To investigate autobiographical memory in a DoC patient, we 
measured their neural activity using fMRI during a novel, passive (i.e., 
response-free) task. Specifically, the patient viewed three sets of video 
clips: (1) clips recorded from their perspective during a recent visit to a 
local mall, (2) similar clips from a control participant’s visit to the same 
mall, (3) novel clips from a different environment. We examined the 

patient’s hemodynamic activity across these three conditions and 
compared it to data from a cohort of healthy controls who underwent the 
same procedure (Erez et al., 2021). We applied a machine learning 
classification approach to 1) identify the brain regions that were most 
associated with naturalistic autobiographical memory retrieval in 
healthy controls and 2) determine whether the patient produced com-
parable neural activation patterns. We hypothesized that if the patient 
produced maps of neural activation comparable to healthy controls 
when viewing scenes from their own life, this would provide evidence of 
their preserved ability to encode and recall novel (i.e., post-injury) 
autobiographical memories.

2. Methods

2.1. Participants

We included data from twelve healthy volunteers (Mean age = 25, 
Range = 20–34; 6 females) previously collected in a published study (see 
Erez et al., 2021 for more details) to serve as the control group for this 
study. We also enrolled two DoC patients but excluded one because they 
were unable to lie flat in the scanner. This left one DoC patient (Age =
29; female; see the results for clinical information) and twelve healthy 
volunteers who completed the study. All healthy volunteers provided 
written informed consent and received compensation for their time, 
while the patient’s substitute decision maker provided written assent. 
The Health Sciences Research Ethics Board and Psychology Research 
Ethics Board at Western University provided ethical approval for the 
study.

2.2. Procedure and design

We first administered the Coma Recovery Scale-Revised (CRS-R) 
behavioural assessment to measure the patient’s arousal and level of 
overt awareness prior to the task (Giacino et al., 2004). Next, we seated 
the patient in a wheelchair and took them on a route through two stores 
(the Apple Store and the Bay) at a local shopping centre in London, 
Ontario, Canada. We attached a forward-facing camera to the wheel-
chair to record audiovisual details during the visits. The twelve controls 
went through exactly the same procedure, including being wheeled 
through the two stores of the mall and remaining silent and 
non-responsive as though they were a DoC patient. The visit to each 
store lasted approximately 20 minutes. Throughout the visit, both 
healthy controls and the patient were asked to refrain from moving their 
head or body and focus on the events directly in front of them.

For both healthy controls and the patient, we divided each mall visit 
recording into 30-s clips for use in the scanning session. We categorized 
these recordings into three conditions: Own videos (autobiographical 
videos from the patient or control’s own recordings at the mall), Other 
videos (for the patient, recordings from a random selection of healthy 
controls recorded at the same locations; for the controls, recordings from 
other healthy controls instead of themselves), and Bookstore videos 
(recordings from a visually similar but novel location that neither the 
patient nor the controls had ever visited; see Fig. 1A). We instructed all 
participants, including the patient, to simply watch and listen to the 
videos, with no overt behavioural response required while in the fMRI 
scanner. The fMRI data was acquired approximately a week (Mean = 6 
days) after the mall visit.

Both the controls and the patient viewed 96 video clips in total (32 
from their Own visit, 32 from the Other condition, and 32 from the 
Bookstore condition). We sorted these clips across six blocks, each con-
sisting of 16 videos, with a 5-s inter-stimulus interval between each clip. 
We randomized the presentation order, with the exception that each 
video was shown twice during the scanning session (once in the first 
three blocks and once in the last three blocks). We excluded any video 
clips that contained the participant’s body parts or other obvious 
identifiers.
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Fig. 1. A: A schematic of the experimental design. Participants viewed video recordings from one of three autobiographical memory conditions: Own videos (the 
participant’s own recordings at the mall), Other videos (recordings from another participant at the same locations), and Bookstore videos (recordings from a visually 
similar but novel location). Each of the 96 clips lasted 30 s, followed by a 5-s inter-stimulus interval. Figure adapted from Erez et al. (2021). B: A schematic of the data 
analysis steps taken to investigate autobiographical memory in the patient. We used a region of interest (ROI) associated with autobiographical memory from the 
online meta-analysis tool NeuroQuery (Dockès et al., 2020). We used this ROI to mask both patient and control data (|t| > 2.5). We then trained a linear support 
vector classifier to use the trial-averaged BOLD activity to distinguish between the autobiographical memory conditions (in the case of this figure, between Own and 
Other conditions). We then applied that model to the patient’s data and calculated how accurate the model was at predicting the different autobiographical 
memory conditions.

Fig. 2. A: An anatomical MRI of the DoC patient. B: The patient’s preprocessed anatomical scan registered to MNI space (generated using fMRIPrep). There is a noted 
loss of grey matter that is prevalent across several brain areas. C: Cross section of the hippocampus in MNI space. While adjacent temporal regions show atrophy, the 
hippocampus appears relatively spared.
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2.3. fMRI data acquisition

We scanned all participants on a Siemens Tim Trio 3 T MRI scanner 
at the Robarts Research Institute at Western University. The structural 
scan was a T1-weighted magnetization-prepared rapid-gradient echo 
(MP-RAGE) with a 1 mm isotropic voxel size and echo time of 3 ms. We 
obtained the functional volumes using a T2*-weighted whole-brain 
echo-planar imaging (EPI) sequence. Each EPI volume consisted of 48 
axial slices, acquired in an interleaved manner (TR = 1000 ms; TE = 30 
ms; flip angle = 40◦; FoV = 208 mm; voxel size = 2.5 mm isotropic).

2.4. fMRI preprocessing

We preprocessed the functional and structural scans using fMRIPrep 
22.0.2 (Esteban et al., 2019; Gorgolewski et al., 2011). For detailed 
preprocessing steps (automatically generated by fMRIPrep), see the 
Supplementary Materials. Briefly, we applied standard preprocessing to 
the T1-weighted image, including intensity non-uniformity correction, 
skull-stripping, segmentation, and normalization to a standard template 
(ICBM 152 Nonlinear Asymmetrical Template (Version, 2009c). For the 
T2*-weighted images from each run, we first referenced the volumes to 
representative volumes, estimated motion parameters and trans-
formation matrices, realigned the volumes, applied slice timing correc-
tion, co-registered the volumes to the native T1-weighted image, 
estimated nuisance regressors and then resampled to MNI space. We 
regressed out the noise confounds (i.e., motion, global signal, and 
physiological signals) from the resulting blood oxygen level dependent 
(BOLD) time series prior to any subsequent analysis and followed that 
with spatial smoothing using a Gaussian kernel (FWHM = 4 mm). We 
performed several quality assurance checks to ensure that this pre-
processing pipeline was suitable in the case of our patient, where stan-
dard preprocessing may be insufficient because of structural 
abnormalities expected following traumatic brain injury (see Fig. 2 for 
the original and spatially registered anatomical scans). Despite the 
damage, spatial registration and data quality were well within accept-
able ranges.

2.5. fMRI decoding analyses

We used a machine learning approach to perform two ‘decoding’ 
analyses. The primary aim of these analyses was to construct a model 
using fMRI data from autobiographical regions in the controls that we 
could then apply to distinguish between the patient’s: (1) Own, Other 
and Bookstore conditions and (2) Own from Other conditions. To ensure 
that our decoding analysis focused on autobiographical memory pro-
cesses, we used an ROI from the neuroimaging meta-analysis platform 
NeuroQuery (Dockès et al., 2020). The keyword “autobiographical 
memory” produced a mask of canonical autobiographical regions, such 
as the hippocampus, parahippocampal gyrus, precuneus, posterior 
cingulate, dorsal prefrontal cortex, and the extrastriate visual cortex 
generated from 523 studies (see Fig. 1B for the ROI). After extracting 
this ROI for each participant, we averaged the BOLD response within 
each trial, producing a total of 32 training examples per condition. We 
then standardized the BOLD response for each participant and voxel.

To determine which pattern of fMRI activity predicted each auto-
biographical memory condition, we used a linear Support Vector Clas-
sifier (SVC; Hearst et al., 1998). Before applying the model to the 
patient’s data, we independently trained and optimized the SVC on 
control data using a Bayesian optimization framework (Bergstra et al., 
2013). Specifically, we optimized the SVC to find the highest average 
leave-one-participant-out balanced accuracy score. During fifteen opti-
mization rounds, we trained the model on all but one control participant 
and tested it on the left-out participant. We calculated the balanced 
accuracy (the arithmetic mean of the sensitivity and the specificity) for 
each left-out participant and averaged it across participants for each 
optimization round. The optimization objective was to find the set of 

SVC hyperparameters that maximized this average. The optimized 
hyperparameters were the regularization parameter C, the loss function 
(hinge or squared hinge), the number of iterations to train the model, the 
stopping criteria, and intercept scaling. Note that the optimization 
procedure occurred entirely using healthy control data, thus preventing 
the model from bias introduced by including the patient’s data. Finally, 
we tested whether the optimized model could accurately classify the 
experimental condition based on the patient’s data, using balanced ac-
curacy to evaluate the model’s performance.

To statistically evaluate the model’s accuracy, we used permutation 
testing. Permutation testing is a non-parametric approach that accu-
rately estimates the ‘true’ chance level by constructing null distributions 
of the model’s accuracy based on the original data (Combrisson and 
Jerbi, 2015; Nichols and Holmes, 2002). Specifically, we retrained and 
retested the optimized model after randomly reshuffling the condition 
labels (i.e., Own, Other, Bookstore) across trials. We repeated this 
approach for 1000 iterations, obtaining a distribution of balanced ac-
curacy scores. We used these null distributions to calculate p-values and 
Z scores for the model’s accuracy for both decoding analyses.

To investigate which brain areas were driving the decoding perfor-
mance, we performed two feature importance computations. First, we 
computed feature importance as a product of the weights of the trained 
model and the average BOLD activity. We computed this measure for 
each condition and averaged it across all trials and participants. For ease 
in interpreting feature importance, we used permutation testing to 
generate null distributions of feature importance expected by chance. 
We then used these distributions to convert the original feature impor-
tance to a Z score with a corresponding p-value. This approach has the 
benefit of allowing us to evaluate feature importance on the trained 
model, on the left-out patient data, and for both 2-class and 3-class 
decoding. To identify the voxels that significantly contributed to the 
model’s performance, we applied false-discovery rate correction to these 
p-values using the max-t approach (Nichols and Holmes, 2002). For the 
second feature importance calculation, we performed recursive feature 
elimination. This involved calculating the balanced accuracy and 
deriving the model weights while keeping different percentiles of voxels 
(100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 1) in the model. Recursive 
feature elimination works by iteratively removing the voxel with the 
smallest weight (inferred as having the lowest ability to discriminate 
between conditions) which repeats until the specified percentile is 
reached. This process thus ranks the voxels based on when they are 
removed from the model. We then tested the model at each percentile on 
the patient’s data to see if removing different percentiles of voxels 
affected the balanced accuracy. We inferred feature importance from the 
voxels that led to the highest balanced accuracy on the patient’s data.

3. Results

3.1. Patient’s clinical history

The patient suffered a traumatic brain injury after being struck by a 
car while cycling. She sustained a left epidural hemorrhage and pneu-
mocephalus as well as several fractures, including a right orbital wall 
(both medial and lateral) fracture, an undisplaced left C6 facet fracture, 
a left sacrum fracture, bilateral temporal bone fractures, and a right 
petrous bone fracture. The patient underwent an epidural hematoma 
evacuation bilaterally and a right craniotomy following post-craniotomy 
hemorrhages. The mall visit occurred approximately four years (1448 
days) post-injury and the fMRI session occurred 8 days later.

We performed the CRS-R (Giacino et al., 2004) on three separate 
occasions. During the initial family meeting (approximately 6 months 
before the study), the patient scored 3 (1A, 0V, 0M, 0O, 0C, 2R) corre-
sponding to a diagnosis of Unresponsive Wakefulness Syndrome. During 
the mall visit, the patient scored a 5 (0A, 3V, 0M, 0O, 0C, 2R) showing 
evidence of visual tracking – corresponding to a diagnosis of minimally 
conscious state. Approximately 5 months following the fMRI assessment, 
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we tested the patient again and she scored 5 (1A, 1V, 0M, 1O, 0C, 2R) 
resulting again in a diagnosis of Unresponsive Wakefulness Syndrome.

The patient’s anatomical scan at the time of the study (shown in 
native T1w space in Fig. 2A and MNI space in Fig. 2B) showed extensive 
grey matter loss, particularly bilateral damage to the temporal lobes. 
However, the hippocampus, a key autobiographical memory region in 

the medial temporal lobes, appeared to be relatively spared (see Fig. 2C).

3.2. Decoding results

3.2.1. Bookstore vs other vs own
First, we confirmed in controls that the model trained on fMRI 

Fig. 3. A: A boxplot showing the distribution of balanced accuracy scores across participants when the model decoded between Own, Other, and Bookstore conditions. 
Individual dots indicate the balanced accuracy of each participant with the dark grey dot reflecting the patient’s score. The confusion matrix shows the number of 
trials in each condition that was predicted by the model (when tested on the patient) and whether that prediction was accurate or inaccurate. B: Surface renderings 
showing the top 20 % of voxels in healthy controls with the highest feature importance (converted to Z-scores for easier interpretation; image threshold at Z = 1). The 
left panel shows the voxels that best discriminated the Own condition from the other two conditions, where red indicates voxels where larger average BOLD activity 
predicted the Own condition, and blue indicates voxels where smaller average BOLD activity predicted the Own condition. The right panel shows the same results but 
for the Bookstore condition. C: Surface rendering of the top 20 % of voxels contributing most to differentiating the Own condition from each other condition, plotted 
on the patient’s anatomical scan. Red indicates voxels where larger average BOLD activity predicted the Own condition and blue indicates where smaller average 
BOLD activity predicted the Own condition.
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activity from autobiographical memory regions could decode between 
the Bookstore, Other and Own conditions (Mean Balanced Accuracy =
0.577, p < .001). We then tested the model on the patient’s data and 
established that it was able to significantly distinguish between these 
three conditions (Balanced Accuracy = 0.448, p = .032) and did so with a 
balanced accuracy score within the range of healthy controls (p = .068; 
see Fig. 3A).

The model trained on controls used many canonical autobiograph-
ical memory regions to help distinguish between the conditions (see 
Table 1S in the Supplementary Materials for a full list of significant re-
gions). Accurate decoding was primarily driven by voxels within the 
extrastriate visual cortex, temporal cortex, precuneus, inferior and su-
perior parietal lobule, retrosplenial cortex, parahippocampal gyrus and 
lateral prefrontal cortex (see Fig. 3B). In general, the model prioritized 
individual or smaller clusters of voxels within these regions. In the pa-
tient, the highest feature importance came from voxels in the extras-
triate visual cortex, temporal cortex, superior parietal lobule, lateral 
prefrontal cortex, and the parahippocampal gyrus (see Fig. 3C and 
Table 2S in the Supplementary Materials). Recursive feature elimination 
revealed that the patient’s balanced accuracy was maximized when we 
trained the model with 5 or 10 % of voxels within the autobiographical 
memory ROI (Balanced Accuracy = 0.479; see Fig. 1S in the 

Supplementary Materials for more details). These models were similarly 
driven by voxels in the extrastriate visual cortex, temporal cortex, pre-
cuneus, posterior cingulate, inferior and superior parietal lobule, ret-
rosplenial cortex, parahippocampal gyrus and lateral prefrontal cortex.

3.2.2. Own vs other
To rule out the possibility that the significant decoding between 

conditions relied on the visually and experientially dissimilar Bookstore 
condition, we constructed a model that could decode between just the 
Own and Other conditions in healthy participants (Mean Balanced Ac-
curacy = 0.581, p < .001). Once again, this classifier also significantly 
decoded between these conditions in the patient (Balanced Accuracy =
0.609, p = .032) and did so well within the range of healthy controls (p 
= .620; see Fig. 4A).

Own vs Other decoding was driven by several regions associated with 
autobiographical memory (see Table 3S for a full list of highly important 
features). Like the Bookstore, Other and Own comparison, accurate 
decoding in controls was due to select voxels within the extrastriate 
visual cortex, temporal cortex, precuneus, posterior cingulate, inferior 
parietal lobule, retrosplenial cortex, parahippocampal gyrus and lateral 
prefrontal cortex (see Fig. 4B). In the patient, however, voxels with the 
highest feature importance were in the extrastriate visual cortex and 

Fig. 4. A: A boxplot showing the distribution of balanced accuracy scores across participants when the model decoded between Own and Other conditions. Individual 
dots indicate the balanced accuracy of each participant with the dark grey dot reflecting the patient’s score. The confusion matrix shows the number of trials in each 
condition that was predicted by the model (when tested on the patient) and whether that prediction was accurate or inaccurate. B: A surface plot showing the top 20 
% of voxels in healthy controls with the highest feature importance (converted to Z-scores for easier interpretation; image threshold at Z = 1). Red indicates voxels 
where larger BOLD activity discriminated the Other condition from the Own condition and blue indicates the opposite. C: A surface plot showing the top 20 % of 
voxels contributing most to differentiating the Other condition from the Own condition, plotted on the patient’s anatomical scan. Red indicates voxels where larger 
average BOLD activity predicted the Other condition and blue shows where smaller average BOLD activity predicted the Own condition
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temporal cortex (see Fig. 4C and) Table 4S in the Supplementary Ma-
terials. Recursive feature elimination revealed that the model’s accuracy 
when tested on the patient’s data was maximized when the model used 
5 % of the voxels in the ROI (Balanced Accuracy = 0.641). These voxels 
were distributed across autobiographical memory regions, including the 
extrastriate visual cortex, temporal cortex, precuneus, posterior cingu-
late, inferior and superior parietal lobule, retrosplenial cortex, para-
hippocampal gyrus and lateral prefrontal cortex (see Fig. 1S in the 
Supplementary Materials for more details).

4. Discussion

4.1. General findings

In this study, we used fMRI to detect neural markers of autobio-
graphical memory in a DoC patient. Through a novel, naturalistic task, 
we assessed the patient’s ability to recollect personal memories from a 
guided mall visit. By analyzing neural activation restricted to canonical 
autobiographical memory regions, we successfully differentiated be-
tween scenes experienced directly by the patient from highly similar 
scenes experienced by others. The ability of this patient to perceive and 
recognize snapshots of their life contrasts sharply with their behavioural 
profile and diagnosed level of awareness. While preliminary, our find-
ings suggest that clusters of preserved functions critical to identity and 
meaning-making – such as intact visual processing, self-other discrimi-
nation, and the ability to form and recognize new memories – may still 
be present in this patient.

To the best of our knowledge, this is the first study to experimentally 
assess autobiographical memory in the absence of reportability in a DoC 
patient, or indeed, in a non-responsive patient of any kind. Previous 
studies have only examined autobiographical memory in patients with 
cognitive motor dissociation under a narrow set of circumstances. These 
typically involved answering simple yes-or-no questions (e.g., “Do you 
have a brother?”) and responding through specific imagery tasks (e.g., 
imagining playing tennis for “yes” or walking through their home for 
“no”) (Monti and Owen, 2010). While physical behaviour was not 
required for these responses to be understood, they were nevertheless 
“reported”, albeit through wilful changes on fMRI activity. In the current 
study, the preservation of autobiographical retrieval – and, by extension 
– autobiographical encoding – was inferred from patterns of fMRI ac-
tivity that were sufficiently similar to those of healthy controls to allow 
us to draw the strong conclusion that similar cognitive processes were at 
work.

The only other relevant example is the case report of a patient, 
presumed to be in a vegetative state, who participated in a research 
study aimed to assess for awareness and residual cognitive functioning. 
Remarkably, this patient later recovered and was able to accurately 
describe specific details about the tasks and even the researchers 
themselves (Owen, 2017; Taylor et al., 2020). In contrast, our results 
provide direct neural evidence that the patient in this study – who 
fluctuated between a diagnosis of vegetative state and minimally 
conscious state – could recognize experiences from their own life and 
distinguish them from others. This study introduces an approach that 
could be used to probe all types of memories in a broad range of 
behaviourally non-responsive patients and provide new information 
about the residual cognitive capacities that we typically ascribe to these 
types of patients. Moreover, the same general approach could also be 
used to assess the memory capabilities of healthy participants, avoiding 
the obvious pitfalls associated with active recall, such as misdirection, 
confusion, or fabrication. Indeed, directly decoding memory content 
provides an objective means of predicting what a person remembers or 
does not. This opens up exciting avenues of research, including under-
standing discrepancies between neural markers of memory and explicit 
report.

Along similar lines, while our results suggest that key processes of 
autobiographical memory are preserved in this patient, the quality and 

quantity of those memories cannot be fully determined. Previous 
research investigating autobiographical memory in patients with mild, 
moderate, and severe traumatic brain injury has consistently reported 
that they have widespread deficits in terms of the quantity of the 
remembered details and a diminished felt sense of remembering (Baird 
and Samson, 2014; Knight and O’Hagan, 2009; Lah et al., 2019; Noul-
hiane et al., 2007; Piolino et al., 2007; Rasmussen et al., 2014; Wammes 
et al., 2017). Indeed, previous studies have found that even restricted 
damage to the brain can severely impact episodic memory (Moscovitch 
et al., 2016; Winocur and Moscovitch, 2011). Of course, while some of 
these deficits may reflect degraded memory per se, others may occur 
because of collateral damage to the executive functions that organize 
and coordinate the encoding and retrieval of autobiographical mem-
ories. It is in this context that John Duncan’s body of work on the role of 
the multiple demands network becomes very relevant (Duncan, 2010; 
Duncan and Owen, 2000; Fedorenko et al., 2013). For example, one of 
the many suggested roles of this network of brain regions is in facili-
tating the executive control required for successful search and retrieval 
of autobiographical memories. Notably, voxels in various regions of the 
multiple demand network regions were influential in decoding between 
the autobiographical memory conditions in this study; for example, the 
lateral prefrontal cortex, which has been linked to memory search, 
retrieval, and the semantic components of autobiographical memory 
(Cabeza and St Jacques, 2007; Maguire, 2001; Martinelli et al., 2013; 
Petrides, 2005; Piolino et al., 2007; Steinvorth et al., 2006; Svoboda 
et al., 2006; see Fig. 2S in the Supplementary Materials for the overlap 
between the multiple demands network and the autobiographical 
memory ROI used in this study).

What one might conclude from our results is that autobiographical 
retrieval was likely very well preserved in our patient and that what we 
were able to detect was not them experiencing some faint, indistinct, 
echo of a past experience, but rather a much more elaborated, fully- 
formed re-experiencing of those recent events, not dissimilar to that 
experienced by healthy controls when put in exactly the same position. 
Indeed, the fact that our decoder was able to tell the difference between 
one person’s visit to The Apple Store (or The Bay) and another person’s 
visit to exactly the same Apple Store (or Bay) is quite remarkable 
because at face value these two experiences were extremely similar. The 
fact that our model could reliably differentiate between these conditions 
in our patient, with accuracies within the range of control participants, 
strongly suggests an autobiographical experience similar to that of 
healthy participants. Future work will explore this issue further, vali-
dating this finding in a larger sample of patients, while further exploring 
the quality and specificity of these autobiographical memories in pa-
tients with DoC.

The regions driving the accurate decoding in this study are consistent 
with findings from previous autobiographical memory research (Cabeza 
and St Jacques, 2007; Daviddi et al., 2023; Martinelli et al., 2013; 
Svoboda et al., 2006). Notably, voxels in the extrastriate visual cortex, 
temporal cortex, precuneus, inferior and superior parietal lobule, ret-
rosplenial cortex, parahippocampal gyrus and lateral prefrontal cortex 
were all useful in distinguishing between the autobiographical memory 
conditions. These regions must act in a coordinated fashion to facilitate 
the complex set of processes required for autobiographical memory, 
including search and retrieval, pattern separation, self-referential pro-
cessing and encoding (Cabeza and St Jacques, 2007; Daviddi et al., 
2023; Martinelli et al., 2013; Svoboda et al., 2006). In the patient, the 
extrastriate visual cortex was particularly important for accurate 
decoding. Importantly, these visual regions were included in our ROI 
due to their previously demonstrated role in memory tasks. For example, 
previous autobiographical memory studies have linked these regions to 
visual imagery and the re-experiencing of visual memories (Cabeza and 
St Jacques, 2007).
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4.2. Limitations

One potential limitation of this study is that non-memory related 
confounds may have contributed to the decoder’s success in the Other vs 
Own comparison. For example, subtle differences in the path taken 
through the mall or the time of day may have resulted in the patient 
encountering more people than the healthy controls, or the lighting 
being different in their videos, potentially changing activity in higher- 
order visual regions. However, this is unlikely for several reasons. 
First, we trained the models exclusively on healthy control data, pre-
venting them from learning from idiosyncrasies in the patient’s data. 
Second, we used permutation testing to determine the balanced accu-
racy expected by chance, accounting for any intrinsic biases in the pa-
tient’s data. Finally, we manually excluded video clips containing visible 
participant body parts or other obvious identifiers to minimize the 
possibility that the machine learning classifier could use these visual 
features to achieve better performance.

4.3. Conclusion

Our study used a novel naturalistic approach to demonstrate pre-
served autobiographical memory in a DoC patient showing minimal to 
no behavioural evidence of awareness. We showed that neuroimaging 
combined with machine learning was able to detect when autobio-
graphical retrieval has occurred, even in the presence of clips from the 
same store that were experienced by others. Because autobiographical 
memory is a cognitive process critical for everyday functioning, 
conscious awareness, and identity, this finding sheds new light on the 
covert cognitive capabilities in this group of patients.
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2007. Do school-age children remember or know the personal past? Conscious. 
Cognit. 16, 84–101. https://doi.org/10.1016/j.concog.2005.09.010.

Prebble, S.C., Addis, D.R., Tippett, L.J., 2013. Autobiographical memory and sense of 
self. Psychol. Bull. 139, 815–840. https://doi.org/10.1037/a0030146.

Rabinowitz, A.R., Levin, H.S., 2014. Cognitive sequelae of traumatic brain injury. 
Psychiatr. Clin. 37, 1–11. https://doi.org/10.1016/j.psc.2013.11.004.

Raichle, M.E., 2015. The brain’s default mode network. Annu. Rev. Neurosci. 38, 
433–447. https://doi.org/10.1146/annurev-neuro-071013-014030.

Rasmussen, A.S., Johannessen, K.B., Berntsen, D., 2014. Ways of sampling voluntary and 
involuntary autobiographical memories in daily life. Conscious. Cognit.: Int. J. 30, 
156–168. https://doi.org/10.1016/j.concog.2014.09.008.

Shepardson, S., Dahlgren, K., Hamann, S., 2023. Neural correlates of autobiographical 
memory retrieval: an SDM neuroimaging meta-analysis. Cortex 166, 59–79. https:// 
doi.org/10.1016/j.cortex.2023.05.006.

Shuanglong, Z., Jiangyuan, Y., Meng, N., Zheng, W., Yunshui, Z., Wei, S., Li, Q., 
Rongcai, J., 2024. A meta-analysis of cognitive and functional outcomes in severe 
brain trauma cases. Front. Behav. Neurosci. 18. https://doi.org/10.3389/ 
fnbeh.2024.1349672.

Steinvorth, S., Corkin, S., Halgren, E., 2006. Ecphory of autobiographical memories: an 
fMRI study of recent and remote memory retrieval. Neuroimage 30, 285–298. 
https://doi.org/10.1016/j.neuroimage.2005.09.025.

Svoboda, E., McKinnon, M.C., Levine, B., 2006. The functional neuroanatomy of 
autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208. 
https://doi.org/10.1016/j.neuropsychologia.2006.05.023.

Taylor, N., Graham, M., Delargy, M., Naci, L., 2020. Memory during the presumed 
vegetative state: implications for patient quality of life. Camb. Q. Healthc. Ethics 29, 
501–510. https://doi.org/10.1017/S0963180120000274.

Threlkeld, Z.D., Bodien, Y.G., Rosenthal, E.S., Giacino, J.T., Nieto-Castanon, A., Wu, O., 
Whitfield-Gabrieli, S., Edlow, B.L., 2018. Functional networks reemerge during 
recovery of consciousness after acute severe traumatic brain injury. Cortex 106, 
299–308. https://doi.org/10.1016/j.cortex.2018.05.004.

Tulving, E., 1985. Memory and consciousness. Can. Psychol./Psychol. Canad. 26, 1–12. 
https://doi.org/10.1037/h0080017.

Tulving, E., 2002. Episodic memory: from Mind to brain. Annu. Rev. Psychol. 53, 1–25. 
https://doi.org/10.1146/annurev.psych.53.100901.135114.

Wammes, J.D., Meade, M.E., Fernandes, M.A., 2017. Learning terms and definitions: 
drawing and the role of elaborative encoding. Acta Psychol. 179, 104–113. https:// 
doi.org/10.1016/j.actpsy.2017.07.008.

Winocur, G., Moscovitch, M., 2011. Memory transformation and systems consolidation. 
J. Int. Neuropsychol. Soc. 17, 766–780. https://doi.org/10.1017/ 
S1355617711000683.

M. Kolisnyk et al.                                                                                                                                                                                                                               Neuropsychologia 211 (2025) 109129 

10 

https://doi.org/10.1016/S0079-6123(09)17704-X
https://doi.org/10.1016/S0079-6123(09)17704-X
https://doi.org/10.1002/ana.24726
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1016/j.apmr.2016.09.112
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
https://doi.org/10.1016/s0140-6736(72)90242-5
https://doi.org/10.1016/s0140-6736(72)90242-5
https://doi.org/10.1162/jocn_a_02143
https://doi.org/10.1073/pnas.2402723121
https://doi.org/10.1073/pnas.2402723121
https://doi.org/10.1080/13803390802363710
https://doi.org/10.1080/13803390802363710
https://doi.org/10.1136/jnnp-2015-310958
https://doi.org/10.1136/jnnp-2015-310958
https://doi.org/10.1016/j.nicl.2020.102472
https://doi.org/10.1111/jnp.12141
https://doi.org/10.1098/rstb.2001.0944
https://doi.org/10.1098/rstb.2001.0944
https://doi.org/10.1002/hbm.22008
https://doi.org/10.1027/0269-8803/a000016
https://doi.org/10.1056/NEJMoa0905370
https://doi.org/10.1056/NEJMoa0905370
https://doi.org/10.1146/annurev-psych-113011-143733
https://doi.org/10.1001/jamaneurol.2013.3686
https://doi.org/10.1073/pnas.1407007111
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1037/1528-3542.7.4.697
https://doi.org/10.1037/1528-3542.7.4.697
https://doi.org/10.1146/annurev-psych-113011-143729
http://refhub.elsevier.com/S0028-3932(25)00064-8/sref46
http://refhub.elsevier.com/S0028-3932(25)00064-8/sref46
https://doi.org/10.1126/science.1130197
https://doi.org/10.1126/science.1130197
https://doi.org/10.1098/rstb.2005.1631
https://doi.org/10.1098/rstb.2005.1631
https://doi.org/10.1007/s00415-020-10125-w
https://doi.org/10.1007/s00415-020-10125-w
https://doi.org/10.1016/j.concog.2005.09.010
https://doi.org/10.1037/a0030146
https://doi.org/10.1016/j.psc.2013.11.004
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1016/j.concog.2014.09.008
https://doi.org/10.1016/j.cortex.2023.05.006
https://doi.org/10.1016/j.cortex.2023.05.006
https://doi.org/10.3389/fnbeh.2024.1349672
https://doi.org/10.3389/fnbeh.2024.1349672
https://doi.org/10.1016/j.neuroimage.2005.09.025
https://doi.org/10.1016/j.neuropsychologia.2006.05.023
https://doi.org/10.1017/S0963180120000274
https://doi.org/10.1016/j.cortex.2018.05.004
https://doi.org/10.1037/h0080017
https://doi.org/10.1146/annurev.psych.53.100901.135114
https://doi.org/10.1016/j.actpsy.2017.07.008
https://doi.org/10.1016/j.actpsy.2017.07.008
https://doi.org/10.1017/S1355617711000683
https://doi.org/10.1017/S1355617711000683

	Total recall: Detecting autobiographical memory retrieval in the absence of behaviour
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Procedure and design
	2.3 fMRI data acquisition
	2.4 fMRI preprocessing
	2.5 fMRI decoding analyses

	3 Results
	3.1 Patient’s clinical history
	3.2 Decoding results
	3.2.1 Bookstore vs other vs own
	3.2.2 Own vs other


	4 Discussion
	4.1 General findings
	4.2 Limitations
	4.3 Conclusion

	CRediT authorship contribution statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


